Chapter 03

Data Exploration

Dr. Steffen Herbold
herbold@cs.uni-goettingen.de

Outline

- Overview
- Summary Statistics
- Visualization for Data Exploration
- Summary

Goal of Data Exploration

- Goal:
- Understand the basic characteristics of the data
- Examples for characteristics:
- Structure
- Size
- Completeness
- Relationships

Methods for Data Exploration

- Usually interactive and semi-automated
- Text editors, system calls (head/more/less), etc. to look at raw data directly
- Helps to understand the structure
- Statistics and visualizations to learn about distributions and relationships
- Exploration should also include meta data
- Feature names, trace links, etc.

Outline

- Overview
- Summary Statistics
- Visualization for Data Exploration
- Summary

Descriptive Statistics

- Summarize data through single value
- Do not predict anything about the data (\rightarrow inductive statistics)
- Common statistics covered in this course
- Central tendency (mean/median/mode)
- Variability (standard deviation, interquartile range)
- Range of data (min/max)
- Other important statistics
- Kurtosis and skewness for the shape of distributions
- More measures for central tendency, e.g., trimmed means, harmonic mean

Central Tendency

- „Typical" value of the data
- Arithmetic mean
- $\operatorname{mean}(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ with $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
- Median
- The value that separates the higher half from the data of the lower half
- Mode
- The value that appears most in the data

Variability

- Measure for the spread of the data
- Also called dispersion
- Standard deviation
- Measure for the difference of observation to the arithmetic mean
- $s d(x)=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\operatorname{mean}(x)\right)^{2}}{n-1}}$
- Interquartile Range (IQR)
- Percentile: value below which a given percentage falls
- Difference between the 75% percentile and the 25% percentile

Range of data

- Range for which values are observed
- Can be infinite!
- Minimum
- Smallest observed value
- Maximum
- Largest observed value
- May be strongly distorted by invalid data
- Makes it also a good tool to discover invalid data

Example

- Random typing on the keypad
- $x=$
$(1,2,1,1,3,4,5,2,3,4,5,1,3,2,1,6,5,4,9,4,3,6,1,5,6,8,4,6,5,1,3,2,1,6,8,7,6,1,3,1,6,8,4,7,6,4,3,5,4,9,7,4,3,1,4,6,8,7,9,1,4,6,1,3,8,6,7,4,9,6,5,1,3,6,8,7)$
- central tendency:
- mean: 4.46052631579
- median: 4.0
- mode (count): 1 (14)
- variability
- sd: 2.41944311488
- IQR: 3.0
- range
- min: 1
- max: 9

Outline

- Overview
- Summary Statistics
- Visualization for Data Exploration
- Summary

A Picture Says More than 1000 Words

Numbers are made up and pie charts should actually be avoided

DescriptiveDeceptive Statistics

Have the same

- Mean
- standard deviation
- correlation between x and y
- linear regression
ii

X	y
10.00	8.04
8.00	6.95
13.00	7.58
9.00	8.81
11.00	8.33
14.00	9.96
6.00	7.24
4.00	4.26
12.00	10.84
7.00	4.82
5.00	5.68

iii

x	y
10.00	9.14
8.00	8.14
13.00	8.74
9.00	8.77
11.00	9.26
14.00	8.10
6.00	6.13
4.00	3.10
12.00	9.13
7.00	7.26
5.00	4.74

iv

x	y
10.00	7.46
8.00	6.77
13.00	12.74
9.00	7.11
11.00	7.81
14.00	8.84
6.00	6.08
4.00	5.39
12.00	8.15
7.00	6.42
5.00	5.73

Anscombe‘s Quartet

Exploring Single Features

Looks like an artificially high value \rightarrow Groups all higher incomes

Plots of the Boston house prices data set
http://archive.ics.uci.edu/ml/machine-learning-databases/housing/

Boxplots

Range of data except outliers

The outlier definition can change. We used „more than 1.5 times the IQR away from the $25 \% / 75 \%$ percentile." You should always check this in the package you use.

Pairwise Scatterplots with Regressions

Pairwise Plots with Classes

Good separation of blue, but green and orange are overlapping

Correlation Heatmap

There are different correlation coefficients. We used Pearson's coefficient, which measures linear correlations.

Hexbin Plots for Many Instances

Cannot see structure due to amount of data

Line Plots for Timeseries

Range of values

Outline

- Overview
- Summary Statistics
- Visualization for Data Exploration
- Summary

Summary

- Important to understand the data available
- Summary statistics provide a good overview
- Can be deceptive!
- Visualization is a powerful way to understand data
- Understanding of meta data and how domain experts understand data equally important!

