Chapter 06

Clustering

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

> Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Outline

- Overview
- Clustering algorithms
 - k-means Clustering
 - EM Clustering
 - DBSCAN Clustering
 - Single Linkage Clustering
- Comparison of the Clustering Algorithms
- Summary

Example of Clustering

The General Problem

The Formal Problem

- Object space
 - $O = \{object_1, object_2, \dots\}$
 - Often infinite
- Representations of the objects in a (numeric) feature space

How do you

measure

similarity?

- $\mathcal{F} = \{\phi(o), o \in O\}$
- Clustering
 - Grouping of the objects
 - Objects in the same group $g \in G$ should be similar
 - $c: \mathcal{F} \to G$

Measuring Similarity Distances

- Small distance = similar
- Euclidean Distance
 - Based on the Eucledian norm $||x||_2$
 - $d(x,y) = ||y x||_2 = \sqrt{(y_1 x_1)^2 + \dots + (y_n x_n)^2}$
- Manhattan Distance
 - Based on the Manhattan norm $||x||_1$
 - $d(x, y) = ||y x||_1 = |y_1 x_1| + \dots + |y_n x_n|$
- Chebyshev Distance
 - Based on the maximum norm $||x||_{\infty}$

•
$$d(x, y) = ||y - x||_{\infty} = \max_{i=1..n} |y_i - x_i|$$

		у
х		

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Evaluation of Clustering Results

- No general metrics, depends on algorithms
 - Low variance for k-Means
 - High density for DBSCAN
 - Good fit in comparison to model variables for EM clustering
 - ...
- Often manual checks
 - Do the clusters make sense?
 - Can be difficult
 - Very large data
 - Many clusters
 - High dimensional data

Outline

Overview

Clustering algorithms

- k-means Clustering
- EM Clustering
- DBSCAN Clustering
- Single Linkage Clustering
- Comparison of the Clustering Algorithms
- Summary

Idea Behind *k*-means Clustering

- Clusters are described by their center
 - The centers are called *centroid*
 - Centroid-based clustering

· Objects are assigned to the closests centroid

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Simple Algorithm

- Select initial centroids C_1, \dots, C_k
 - Randomized
- Assign each object to closest centroid
 - $c(x) = \operatorname{argmin}_{i=1..k} d(x, C_i)$
- Update centroid
 - Arithmetic mean of assigned objects

•
$$C_i = \frac{1}{|\{x:c(x)=i\}|} \sum_{x:c(x)=i} x_i$$

- Repeat update and assignment
 - Until convergence, or
 - Until maximum number of iterations

Visualization of the *k*-means Algorithm

Selecting k

Intuition and knowledge about data

- Based on looking at plots
- Based on domain knowledge
- Due to goal
 - Fixed number of groups desired
- Based on best fit
 - Within-sum-of-squares
 - $WSS = \sum_{i=1}^{k} \sum_{x: c(x)=i} d(x, C_i)^2$

Results for k = 2, ..., 5

2, 3, and 4 all okay \rightarrow use domain knowledge to decide

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Problems of k-Means

- Depends on initial clusters
 - Results may be unstable
- Wrong k can lead to bad results
- All features must have a similar scale
 - Differences in scale introduce artificial weights between features
 - Large scales dominate small scales
- Only works well for "round" clusters

Outline

Overview

Clustering algorithms

- k-means Clustering
- EM Clustering
- DBSCAN Clustering
- Single Linkage Clustering
- Comparison of the Clustering Algorithms
- Summary

Idea Behind EM Clustering

- Clusters are described by probability distributions
 - Usually normal distribution ("Gaussian Mixture Model")
 - Distribution-based clustering
- Objects are assigned to the "most likely" cluster

How do you

get the distributions?

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

(Simplified!) EM Algorithm

• Task: Determine k normal distributions that "fit" the data well

- $C_1 \sim (\mu_1, \sigma_1), \dots, C_k \sim (\mu_k, \sigma_k),$
- Estimate start values similar to k-means
- Expectation step
 - Calculate weights of objects
 - · Weights define the likelihood that an object belongs to a cluster
 - $w_j(x) = \frac{p(x|\mu_j,\sigma_j)}{\sum_{i=1}^k p(x|\mu_i,\sigma_i)}$ for all objects $x \in X$
- Maximization step
 - Update mean values
 - $\mu_j = \frac{1}{|X|} \sum_{x \in X} w_j(x) \cdot x$

WARNING: This is a correct, but simplified version of the algorithm that ignores the update of the (co)variance.

Visualization of the EM Algorithm

Selecting k

• Same as k-means: Intuition, knowledge, goal

- Bayesian Information Criterion (BIC)
 - Difference between the model complexity and the likelihood of the clusters
 - $BIC = \ln(|\mathbf{X}|)\mathbf{k}' 2 \cdot \ln(\hat{L}(C_1, \dots, C_k; X))$
 - \mathbf{k}' is the number of model parameters (i.e., mean values, covariances)
 - $\hat{L}(C_1, ..., C_k; X) = p(C_1, ..., C_k | X)$ is the likelihood function
 - The lower the better
 - Decreases with less complex models
 - · Decreases with better likelihood

Results for k = 1, ..., 4

Problems of EM Clustering

- Depends on initial clusters
 - Results may be unstable
- Wrong k can lead to bad results
- May not converge
- Only works well with normally distributed clusters

Outline

Overview

Clustering algorithms

- k-means Clustering
- EM Clustering
- DBSCAN Clustering
- Single Linkage Clustering
- Comparison of the Clustering Algorithms
- Summary

Idea behind DBSCAN

- Clusters are described by other objects close by
 - Density-based clustering
- Scan area around an object for other objects
 - If objects are found, they probably belong to the same group
 - If no objects are found, the object is probably noise

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

(Relatively) Simple Algorithm

- Two parameters
 - Neighborhood size ϵ
 - Minimal number of points to be considered dense *minPts*
- Determine all objects with dense neighborhoods (core points) *x* ∈ *X* such that |{*x'* ∈ *X*: *d*(*x*, *x'*) ≤ *ε*}| ≥ minPts
- Grow clusters by assigning all points that share a neighborhood to the same cluster
- All points that are neither core points nor in the neighborhood of a core point are noise

Visualization of the DBSCAN Algorithm

Problems of DBSCAN

- All features must be in the same range
- What if different clusters have different densities?
 - → Main problem of DBSCAN!

This is also related to the size of the data
→ DBSCAN is very sensitive to sampling

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Outline

Overview

Clustering algorithms

- k-means Clustering
- EM Clustering
- DBSCAN Clustering
- Single Linkage Clustering
- Comparison of the Clustering Algorithms
- Summary

Idea behind Hierarchical Clustering

Clusters are described by hierarchies of similarity

- Hierarchical clustering (also called connectivity-based clustering)
- Find most similar pair of objects and establish link
 - "Nearest Neighbor Clustering"

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Simple Single Linkage Algorithm (SLINK)

- Every object has its own cluster at the beginning
- The *level* of all these basic clusters is 0
 - L(C) = 0 for all $C = \{x\}$ with $x \in X$
- Find two closest clusters
 - $C, C' = \operatorname{argmin}_{C,C' \in Clusters} d(C, C')$
 - $d(C,C') = \min_{x \in C, x' \in C'} d(x,x')$
- Merge C, C' into a new cluster $C_{new} = C \cup C'$
- The level is the distance between the initial clusters
 - $L(C_{new}) = d(C, C')$

Dendrograms of Clustering

• Visualizes clustering as a tree

- Horizontal line: Merging of two clusters
- Vertical line: Increase of the level due to merge

Problems with Hierarchical Clustering

- Often scales badly in terms of memory consumption
 - Standard algorithm requires square matrix of distances between all objects
- All features must be in the same range
- Different densities in different clusters may be problematic
 - · Hard to find single cut-off
 - Can be solved by visual analysis of the dendrogram

Outline

- Overview
- Clustering algorithms
 - k-means Clustering
 - EM Clustering
 - DBSCAN Clustering
 - Single Linkage Clustering

Comparison of the Clustering Algorithms

Summary

Comparison of Clusters

Comparison of Execution Times

Single linkage requires too much memory for larger clusters

Strengths and Weaknesses

	Cluster number	Explanatory value	Concise representation	Categorical features	Missing features	Correlated features
k-means	-	+	+	-	-	-
EM	0	+	+	-	-	0
DBSCAN	+	-	-	-	-	-
SLINK	0	+	-	-	-	-

There are clustering algorithms for categorical data, e.g., *k*-modes

Summary

- Clustering is concerned with the inference of groups for objects
- Works well for numeric data but is often not well suited for categorical data
 - Scales are very important for most clustering algorithms
- Different types of clustering algorithms
 - Centroid-based
 - Distribution-based
 - Density-based
 - Hierarchical / connectivity-based
- Evaluation often difficult and requires manual intervention