Chapter 07

Classification

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

> Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

Example of Classification

The General Problem

The Formal Problem

- Object space
 - $0 = \{object_1, object_2, ... \}$
 - Often infinite
- Representations of the objects in a feature space
 - $\mathcal{F} = \{\phi(o), o \in 0\}$
- Set of classes
 - $C = \{class_1, \dots, class_n\}$

• A target concept that maps objects to classes

- $h^*: O \rightarrow C$
- Classification
 - Finding an approximation of the target concept

How do you get *h**?

The "Whale" Hypothesis

• Why do we know this is a whale?

Hypothesis: Objects with fins, an oval general shape that are black on top and white on the bottom in front of a blue background are whales.

The Hypothesis

- A hypothesis maps features to classes
 - $h: \mathcal{F} \to C$
 - $h: \phi(o) \to C$
- Approximation of the target concept h^*
 - $h^*(o) \approx h(\phi(o))$
- Hypothesis = Classifier = Classification Model

Classification using Scores

- A numeric score for each class $c \in C$
- Often a probability distribution
 - $h': \phi(o) \rightarrow [0,1]^{|C|}$
 - $||h'(\phi(o))||_1 = 1$
- Example
 - Three classes: "whale", "bear", "other"
 - $h'(\phi("whalepicture")) = (0.7, 0.1, 0.2)$

- Standard approach:
 - Classification is class with highest score

Thresholds for Scores

• Different thresholds also possible

Quality of Hypothesis

How do you evaluate $h^*(o) \approx h(\phi(o))$

Goal: Approximation of the target concept
h^{*}(o) ≈ h(φ(o))

→ Use Test Data

- Structure is the same as training data
- Apply hypothesis

		$\phi(o)$			h *(0)	$h(\phi(o))$
hasFin	shape	colorTop	colorBottom	background	class	prediction
true	oval	black	black	blue	whale	whale
false	rectangle	brown	brown	green	bear	whale

The Confusion Matrix

• Table of actual values versus prediction

Actual class

Binary Classification

- Many problems are binary
 - Will I get my money back?
 - Is this credit card fraud?
 - Will my paper be accepted?
 - ...
- Can all be formulated as either being in a class or not
 →Labels *true* and *false*

The Binary Confusion Matrix

- False positives are also called Type I error
- False negatives are also called Type II error

Binary Performance Metrics (1)

- Rates per actual class
 - True positive rate, recall, sensitivity
 - Percentage of actually "True" that is predicted correctly

•
$$TPR = \frac{TP}{TP + FN}$$

- True negative rate, specificity
 - Percentage of actually "False" that is predicted correctly

•
$$TNR = \frac{TN}{TN + FP}$$

- False negative rate
 - Percentage of actually "True" that is predicted wrongly

•
$$FNR = \frac{FN}{FN+TP}$$

- False positive rate
 - Percentage of actually "False" that is predicted wrongly

•
$$FPR = \frac{FP}{FP+TN}$$

Binary Performance Metrics (2)

- Rates per predicted class
 - Positive predictive value, precision
 - · Percentage of predicted "True" that is predicted correctly
 - $PPV = \frac{TP}{TP + FP}$
 - Negative predictive value
 - Percentage of predicted "False" that is predicted correctly

•
$$NPV = \frac{TN}{TN + FN}$$

- False discovery rate
 - Percentage of predicted "True" that is predicted wrongly

•
$$FDR = \frac{FP}{TP + FP}$$

- False omission rate
 - Percentage of predicted "False" that is predicted wrongly

•
$$FOR = \frac{FN}{FN+TN}$$

Binary Performance Metrics (3)

- Metrics that take "everything" into account
 - Accuracy
 - Percentage of data that is predicted correctly
 - $accuracy = \frac{TP+TN}{TP+TN+FP+FN}$
 - F1 measure
 - Harmonic mean of precision and recall
 - $F_1 = 2 \frac{precision \times recall}{precision+recall}$
 - Matthews correlation coefficient (MCC)
 - Chi-squared correlation between prediction and actual values
 - $MCC = \frac{TP \times TN FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

Receiver Operator Characteristics (ROC)

- Plot of true positive rate (TPR) versus false positive rate (FPR)
- Different TPR/FPR values possible due to thresholds for scores

Area Under the Curve (AUC)

- Large Area = Good Performance
- Accounts for tradeoffs between TPR and FPR

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Micro and Macro Averaging

- Metrics not directly applicable for more than two classes
 - Accuracy is the exception
- Micro Averaging
 - Expand formulas to use individual positive, negative examples for each class
- Macro Averaging
 - Assume one class as true, combine all other as false
 - Compute metrics for all such combinations
 - Take average
- Example for the true positive rate:

•
$$TPR_{micro} = \frac{\sum_{c \in C} TP_c}{\sum_{c \in C} TP_c + \sum_{c \in C} FN_c}$$

• $TPR_{macro} = \frac{\sum_{c \in C} \frac{TP_c}{TP_c + FN_c}}{|C|}$

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

Overview of Classifiers

- The following classifiers are introduced
 - k-nearest Neighbor
 - Decision Trees
 - Random Forests
 - Logistic Regression
 - Naive Bayes
 - Support Vector Machines
 - Neural Networks

k-nearest Neighbor

Basic Idea

- Instances with similar feature values should have the same class
- Class can be determined by looking at instances that are similar

\rightarrow Assign each instance the mode of its k nearest instances

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Impact of k

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Decision Trees

Basic Idea

- Make decisions based on logical rules about features
- Organize rules as a tree

Basic Decision Tree Algorithm

Recursive algorithm

- Stop if
 - Data is "pure", i.e. mostly from class
 - Amount of data is too small, i.e., only few instances in partition
- Otherwise
 - Determine "most informative feature" X
 - Partition training data using X
 - Recursively create subtree for each partition
- Details may vary depending on the specific algorithm
 - For example, CART, ID3, C4.5
- General concept always the same

The "Most Informative Feature"

- Information theory based approach
- Entropy of the class label • $H(C) = -\sum_{c \in C} p(c) \log p(c)$

Can be used as measure for purity

- Conditional entropy of the class label based on feature X
 - $H(C|X) = -\sum_{x \in X} p(x) \sum_{c \in C} p(c|x) \log p(c|x)$

Interpret each dimension as random variable

- Mutual Information
 - I(C,X) = H(C) H(C|X)

 \rightarrow Feature with highest mutual information is most informative

Decision Surface of Decision Trees

All decisions are axis-aligned

Random Forest

Classification as majority vote of random trees

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Bagging as Ensemble Learner

- Bagging is short for *bootstrap aggregating*
- Randomly draw subsamples of training data
- Build model for each subsample \rightarrow ensemble of models
- Voting to create class
 - Can be weighted, e.g., using quality of ensemble models
- Random Forests combine Bagging with
 - Short decision trees, i.e., low depth
 - Allowing only a random subset of features for each decision

Decision Surface of Random Forests

Logistic Regression

- Basic Idea:
 - Regression model of the probability that an object belongs to a class
 - Combines the *logit* function with *linear regression*
- Linear Regression
 - y as linear combination of $x_1, ..., x_n$
 - $y = b_0 + b_1 x_1 + \dots + b_n x_n$
- The *logit* function
 - $logit(P(y=c)) = ln \frac{P(y=c)}{1-P(y=c)}$
- Logistic Regression
 - $logit(P(y = c)) = b_0 + b_1 x_1 + \dots + b_n x_n$

Odds Ratios

- Probabilities vs. Odds
 - Probability: *P*(pass_exam) = 0.75
 - Odds of passing the exam: $odds(pass_exam) = \frac{0.75}{1-0.75} = 3$
 - The odds if passing the exam is 3 to 1
- If we invert the natural logarithm, we get

Definition of odds $\frac{P(y=c)}{1-P(y=c)} = \exp(b_0 + b_1 x_1 + \dots + b_n x_n) = \prod_{j=0}^n \exp(b_j x_j)$

- It follows that $\exp(b_j)$ is the odds ratio of feature j
 - Odds ratio means the change in odds if we increase x_i by one.
 - Odds ratio greater than one means increased odds
 - Odds ratio less than one mean decreased odds

Decision Surface of Logistic Regression

Decision boundaries are linear

Naive Bayes

- Basic idea:
 - Assume all features as independent
 - Score classes using the conditional probability
- Bayes Law
 - $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$
- Conditional probability of a class:

•
$$P(c|x_1, ..., x_n) = \frac{P(x_1, ..., x_n|c)P(c)}{P(x_1, ..., x_n)}$$

From Bayes Law to Naive Bayes

- Probability following Bayes law
 - $P(c|x_1, ..., x_n) = \frac{P(x_1, ..., x_n|c)P(c)}{P(x_1, ..., x_n)}$
- "Naive" assumption: x_1, \dots, x_n conditionally independent given c• $P(c|x_1, \dots, x_n) = \frac{P(x_1|c) \dots P(x_n|c) P(c)}{P(x_1, \dots, x_n)} = \frac{\prod_{j=1}^n P(x_j|c) P(c)}{P(x_1, \dots, x_n)}$
- $P(x_1, ..., x_n)$ is independent of c and always the same • $score(c|x_1, ..., x_n) = \prod_{j=1}^n P(x_j|c) P(c)$
- Assign the class with highest score

Multinomial and Gaussian Naive Bayes

- Different variants on how $P(x_j|c)$ is estimated
- Multinomial
 - $P(x_j|c)$ is the empirical probability of observing a feature
 - "Counts" observations of x_i in the data
- Gaussian
 - Assumes features follow a gaussian/normal distribution
 - Estimates $P(x_j|c)$ conditional probability using the gaussian density function

Decision Surface of Naive Bayes

- Multinomial has linear decision boundaries
- Gaussian has piecewise quadratic decision boundaries

Support Vector Machines (SVM)

• Basic Idea:

Calculate decision boundary such that it is "far away" from data

Non-linear SVMs through Kernels

• Expand features using kernels to separate non-linear data

- Transformation into high-dimensional kernel space
 - Can be infinite (e.g., Gaussian kernel, RBF kernel) !
- Calculate linear separation in kernel space
- Use kernel trick to avoid actual expansion

Quadractic

kernel

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Decision Surface of SVMs

Shape of decision surface depends on kernel

Neural Networks

- Basic Idea:
 - Network of neurons with different layers and communication between neurons
 - Input layer feeds data into the network
 - Hidden layers "correlate" data
 - Output layer gives computation results

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Multilayer Perceptron (MLP)

- First weighted sum of inputs
- Then activation function, e.g, sigmoid/tanh

Each feature gets an input neuron

Multiple fully connected hidden layers Single output neuron with the classification

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Decision Surface of MLP

Shape of decision boundary depends on

- Activation function
- Number of hidden layers
- Number of neurons in the hidden layers

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

General Approach

• Different approaches behind all covered classifiers

- k-nearest Neighbor
- Decision Trees
- Random Forests
- Logistic Regression
- Naive Bayes
- Support Vector Machines
- Neural Networks

- → Instance based
- \rightarrow Rule based + information theory
- → Randomized ensemble
- → Regression
- → Conditional probability
- \rightarrow Margin maximization + kernels
 - (Very complex) Regression

 \rightarrow

Comparison of Decision Surfaces IRIS Data

Results may vary with hyper parameter tuning

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Comparison of Decision Surfaces Non-linear separable

Results may vary with hyper parameter tuning

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Comparison of Decision Surfaces Circles within circles

Introduction to Data Science https://sherbold.github.io/intro-to-data-science Results may vary with hyper parameter tuning

Comparison of Execution Times

Times taken using GWDG Jupyter Hub and scikit-learn implementations of the algorithms. Data randomly generated with using scikit-learn.datasets.make_moons (July 2018)

Strengths and Weaknesses

	Explanatory value	Consise representation	Scoring	Categorical features	Missing features	Correlated features
<i>k</i> -nearest Neighbor	0	-	-	-	+	-
Decision Tree	+	+	+	+	0	+
Random Forest	-	0	+	+	0	+
Logistic Regression	+	+	+	0	-	0
Naive Bayes	0	0	+	+	-	-
SVM	-	0	-	0	-	-
Neural Network	-	0	+	0	-	+

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

Summary

- Classification is the task of assigning labels to objects
- Many evaluation criteria
 - Confusion matrix commonly used
- Lots of classification algorithms
 - Rule based, instance based, ensembles, regressions, ...
- Different algorithms may be best in different situations