Chapter 09

Time Series Analysis

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

> Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Outline

Overview

• Methods for Time Series Analysis

• Summary

Example of Time Series Analysis

The General Problem

The Formal Problem

• Discrete values over time

- $\{x_1, \dots, x_T\} = \{x_t\}_{t=1}^T$ with $x_t \in \mathbb{R}$
- Can be seen as a series of random variables or a stochastic process
- Time between t and t + 1 must be equal for all t = 1, ..., T 1
 - Minutes, hours, days, weeks, months, ...

Components of a time series

- General trend of the time series T_t
- Seasonal effects on the time series S_t
- Autocorrelation between observations R_t
- $x_t = T_t + S_t + R_t$

Outline

Overview

Methods for Time Series Analysis

• Summary

Time Series Analysis with Box-Jenkins

• For stationary data

- Stationary means constant mean value and variance
- \rightarrow Requires de-trending and seasonal adjustment

- Models autocorrelation as a stochastic process
 - Observations depend on past observation and a random component
- Tries to model time series with only few parameters
 - Goal are simple models

Detrending Through Regression

• Non-linear regression for non-linear trends

Seasonal Adjustment through the Mean

Seasonal effect:

- A regularly repeating pattern
- Monthly, weekly, ...
- Seasonal adjustment through the seasonal mean value

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Differencing for Detrending

- Instead of regression / removal of mean seasonal effects
- Differencing for detrending of order d
 - First difference for moving mean values (d = 1)
 - Similar to linear trends
 - $\Delta^1 x_t = x_t x_{t-1}$
 - Second difference for moving mean and the change in the movement (d = 2)
 - Similar to quadratic trends
 - $\Delta^2 x_t = \Delta^1 x_t \Delta^1 x_{t-1} = x_t 2x_{t-1} + x_{t-2}$

Differencing for Seasonal Adjustment

- Seasonal differencing for seasons of periodicity S
 - $\Delta_S x_t = x_t x_{t-S}$
 - $\Delta_{12}x_t = x_t x_{t-12}$ would be seasonal differencing for monthly data

Comparison of Adjustments

Introduction to Data Science https://sherbold.github.io/intro-to-data-science

Autocorrelation

Relationship between time series values with other time series values

Autocorrelation over Time

Partial Autocorrelation

Autocorrelation that is not explained by "carrying over"

- x_t and x_{t+1} are correlated
- x_{t+1} and x_{t+2} are correlated
- How much of the correlation between x_t and x_{t+2} is not explained by the above correlations?
- In other words, how much of the correlation between x_t and x_{t+2} is independent of the correlation between x_t / x_{t+1} and x_{t+1} / x_{t+2} ?

ARMA Time Series Models

- Requires detrended and seasonally adjusted data
- Model for the autocorrelation part R_T of a time series

Picking p and q

- Analyze (partial) autocorrelation function
 - p = 1 would model everything except the missing seasonal effect
 - p = 13 would capture missing seasonal effect at the cost of a more complex model
 - q = 0 or q = 1 to account for low random fluctuations

Outline

Overview

• Methods for Time Series Analysis

• Summary

Summary

- Time series analysis considers data over time
 - Equal intervals
- More than just regression
 - Seasonal effects
 - Autocorrelation
- Complex topic with many options for modelling
 - Trend detection
 - Seasonal adjustment
 - Autocorrelation modelling
 - Completely different approaches, e.g., based on neural networks