Chapter 11

Statistical Tests

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

GEORG-AUGUST-UNIVERSITÄT Göttingen

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

Reasons for Hypothesis Testing

Is this data normally distributed? Do both populations have the same central tendency and/or variance?

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Null and Alternative Hypothesis

- Hypothesis testing evaluates assumptions about data
 - Assumption == Hypothesis
- Null Hypothesis (H_0)
 - Assumption of the test holds and is failed to be rejected at some level of significance.
- Alternative Hypothesis (H_1, H_a)
 - Assumption of the test does not hold and is rejected at some level of significance.
- Most important questions:
 - What is the assumption of a test?
 - What does "rejected at some level of significance" mean?

P-Values

- The probability of the observed data or more extreme data, given the null hypothesis is true.
 - Given the hypothesis, how likely is the data?
 - Not the same as given my data, how likely is the hypothesis!
 - Never use p-values as scores!
- Calculated using the probability density function of a test statistic
 - Given the hypothesis, how likely is this statistical value about the data?

Student's *t*-Distribution

- Test statistic used for estimating mean values for normally distributed data
- Probability density function for the location of the deviation of a sample mean value from the real mean value

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Example: Welch's t-Test

Also requires calculation of the degrees of freedom, which we omit here

- Null Hypothesis
 - The means of two normally distributed populations X_1 and X_2 are equal.
- *t* statistic for Welch's test:

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Null hypotheses of important tests

- Welch's t-test
 - The means of two normally distributed populations are equal
- Shapiro-Wilk test
 - A population of 3 to 5000 independent samples is normally distributed
- Kolmogorov-Smirnoff test
 - Two populations have the same probability distribution
- Mann-Whitney-U Test / Wilcoxon-Ranksum-test
 - The values from one population dominate the values of another population (more or less difference of means/medians)
- Levene's test
 - The variances of a group of populations are equal
- ANOVA
 - The mean values of a group of populations are equal

Combinations of Tests

Significance and Confidence

- Significance level α
 - Probability of rejecting the null hypothesis, given that it is true
 - Depends on domain
 - Common values:
 - 0.05 (de-facto standard)
 - 0.005 (currently proposed newer standard to reduce false positives)
- Confidence level
 - Probability of not rejecting the null hypothesis, given that it is true
 - 1 α
- Used to evaluate tests
 - If p value > alpha fail to reject null hypothesis
 - If $p value \leq alpha$ reject the null hypothesis \rightarrow significant result

Example for running tests

Problems with hypothesis testing

• No binary results!

 Results are probabilistic, i.e., you can reject/fail to reject the null hypothesis with a certain probability, but you cannot make binary claims.

Using p-values for scoring

- p-values describe the likelihood of the data, given the hypothesis
- Not the same as likelihood of hypothesis, given data!
- →Scoring makes no sense!
- p-hacking
 - Re-running tests with different data until a desired result is found
 - Often inadvertent, e.g., due to subgroup analysis

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

Significant ≠ Important

R

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Effect size

 Measures the distance between central tendency with respect to the variance

Cohen's d

Difference of means relative to the standard deviation

$$d = \frac{mean(X_1) - mean(X_2)}{mean(X_2)}$$

- d = 1 means that the difference of means is "one standard deviation"
- s is the pooled standard deviation

• $s = \sqrt{\frac{(N_1 - 1) \cdot sd(X_1)^2 + (N_2 - 1) \cdot sd(X_2)^2}{N_1 + N_2 - 2}}$ Square root of the weighted mean of the variances

Effect size (Cohen's d): -0.129 - small effect

How do we know this is small?

Interpretation of Effect Sizes

According to Cohen and Sawilowsky

Cohen's <i>d</i>	Effect size
<i>d</i> < 0.01	Negligible
<i>d</i> < 0.2	Very Small
<i>d</i> < 0.5	Small
<i>d</i> < 0.8	Medium
<i>d</i> < 1.2	Large
<i>d</i> < 2.0	Very Large
$ d \ge 2.0$	Huge

- Designed for social sciences
- Should be used with care, but is broadly used in many domains

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

How accurate are estimations?

• Example:

- You have twenty different data sources.
- You train on five of them and test on the other fifteen.
- The mean value of the 15 test values is 0.83, the standard deviation is 0.13.

Confidence Intervals

We are assuming that everything is normally distributed. Similar formulas are available for non-normal data

- Definition:
 - A C% confidence interval θ for some parameter p is an interval that is expected with probability C% to contain p.

 \boldsymbol{p}

- *C* is also called the confidence level
- Confidence interval for the mean value of normally distributed data with known standard deviation

•
$$\theta = \left[mean(X) - z_C \frac{sd(X)}{\sqrt{n}}, mean(X) + z_C \frac{sd(X)}{\sqrt{n}} \right]$$

 $\rightarrow \pm z_C \frac{sd(X)}{\sqrt{n}}$ uncertainty about the actual mean value

Explanation of z_C

• Choosen such that $[-z_C, z_C]$ is the C% confidence interval of the standard normal distribution

• In practice: look it up in a table

Example for Confidence Intervals

• Example (repeated):

• The mean value of the 15 test values is 0.83, the standard deviation is 0.13.

С	z _c	θ
90%	1.645	[0.775, 0.885]
95%	1.96	[0.764, 0.896]
99%	2.58	[0.743, 0.916]
99.5%	2.807	[0.736, 0.924]
99.9%	3.291	[0.720, 0.940]

Interpretation of Confidence Intervals

- Correct interpretation of a C% confidence interval θ
 - C% chance that results of future replications fall into $\boldsymbol{\theta}$
 - No statistical difference from estimated parameter with C% confidence
 - There is a 1 C% probability of the observed data, if the true value for the estimate is outside of θ
- Wrong interpretation
 - The true value lies with C% probability in θ
 - C% of the observed data is in θ

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

Summary

- Hypothesis testing to evaluate significance of differences
 - Not significant \rightarrow can be explained by random effects
 - Test results are probabilities, not binary true/false statements!
- Effect sizes to evaluate strengths of significant differences
- Confidence intervals to estimate accuracy of results
 - How stable are the results, if the experiment is repeated?
- All of the above are often misused or interpreted wrongly!

