
Chapter 12

Big Data with
Map / Reduce

Dr. Steffen Herbold

herbold@cs.uni-goettingen.de

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Outline

• Overview

• MapReduce

• Apache Hadoop

• Apache Spark

• Summary

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Repetition: Definition of Big Data

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

What are the innovative 

forms of information

processing?



Parallelism is Mandatory

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

In pioneer days they used oxen for heavy pulling, and when 

one ox couldn't budge a log, they didn't try to grow a larger ox.

We shouldn't be trying for bigger computers, but for more 

systems of computers 

– Grace Hopper



Parallel Programming Models

• Message Passing
• Independent tasks on local data

• Tasks interact by exchanging messages

• Shared memory
• Tasks share common address space

• Tasks interact by reading/writing in this space

• Data parallelization
• Tasks execute independent operations on partitions of data

• Well suited for problems that are “embarrassingly parallel”

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Traditional Infrastructures

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Data storage

…Compute cluster

Result / Insight

Database or Storage 

Area Network (SAN)

Compute Nodes



Message Passing / Shared Memory

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Data storage

…Compute cluster

Result / Insight

Each node may load complete

data!

→ Does not scale



Data Parallelization

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Data storage

…Compute cluster

Result / Insight

Each node only loads partition

→ Scales better

→ Still requires transfering all 

data over the network



Data Locality as Solution

• Not supported by traditional clusters / infrastructures
• Clusters for sharing CPUs, not storage

• Storage made for IO, not computations

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

If moving data is the problem, 

stop moving the data!



Core concept of Big Data Technologies

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Parallelization Data Locality

Compute Cluster with Distributed Storage

…

Our examples:



Outline

• Overview

• MapReduce

• Apache Hadoop

• Apache Spark

• Summary

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



MapReduce

• Programming model for data parallelization
• Published in 2004 by Google

• map() and reduce() functions for data processing
• Based on transformations of key-value pairs

• shuffle() function for arranging intermediate results

• Distribution via master/worker paradigm
• Supports high availability / recoverability

• Discussed together with hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing 

on large clusters." Communications of the ACM, 51.1 (2008): 107-113.



Overview of MapReduce

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Value

map() shuffle()

Key

reduce()

Initial pairs

<key1,value1>

Intermediate pairs

<key2,value2>

Pairs grouped

by key2

Results by

key2



The map() Function

• Concept from functional programming

• Applies a function to every item in the input separately
• map(fun, <key1,value1>) → list(<key2, value2>)

• Functions are usually user-defined

• Input keys and output keys can be different
• Also different types

• Output is a list, i.e., one mapping can have multiple outputs
• All list elements must have same types

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Data parallelization

trivial

In the initial MapReduce implementation, all 

keys and values were strings, users where

expected to convert the types if required as

part of the map/reduce functions



The shuffle() Function

• Organize data by key
• shuffle(list(<key2,value2>)) → list(<key2, list(value2)>)

• Often includes sorting by key for efficiency

• Shuffle does not wait for map() to finish
• Once a <key2,value2> is available it can be shuffled

• Reduces waiting times

• Provided by the MapReduce framework
• Can be overridden by users to optimize for use case

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



The reduce() Function

• Related to fold from functional programming

• Aggregates <key2,value2> pairs with the same key
• Single value per key

• Results in a list of values, one for each key
• reduce(fun, list(<key2,list(value2)>)) → list(value3)

• Functions are usually user defined

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Parallelization with MapReduce

• Input can be read in chunks
• Parallelism for creation of initial key-value pairs

• map() can be computed for each key-value pair independently
• Parallelism potential only limited by amount of data

• shuffle() can start working as soon as first key-value pair is
processed

• Limits waiting times

• reduce() can run in parallel for different keys
• Need not wait for map to complete

• Can already start when all results for a key are available

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Word Counts with MapReduce

• Our Data:

• Initial <key1,value1> pairs:
• <sentence1, “what is your name”>

• <sentence2, “the name is bond james bond”>

• map() function: emit <word,1> for each word in a sentence
• <sentence1, “what is your name”> 

→ <“what”,1>, <“is”,1>,<“your”,1>,<“name”,1>

• <sentence2, “the name is bond james bond”>

→ <“the”, 1>,<“name”,1>,<“is”,1>,<“bond”,1>,<“james”,1>,<“bond”,1>

• reduce() function: key concatenated with sum of values
• <“what”, list(1)> → “what: 1”

• <“bond”, list(1,1)> →”bond: 2”

• …

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

This is the “Hello 

World” for 

MapReduce

What is your name?

The name is Bond, James Bond.



Outline

• Overview

• MapReduce

• Apache Hadoop

• Apache Spark

• Summary

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Overview of Hadoop

• Open-source implementation of MapReduce
• Supported by all major cloud providers

• Used by many large companies, e.g., Twitter, Facebook, Amazon, …

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

HDFS

YARN

Hadoop

MapReduce
OthersData Processing

Cluster resource management

Distributed file system



Hadoop Distributed File System (HDFS)

• Core component of Hadoop

• Goals of HDFS
• High throughput instead of low latency

• Support for large files and data sets

• Moving computation instead of moving data (→ Data locality)

• Resiliency against hardware failures

• Uses a master/slave architecture

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Overview of HDFS

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

NameNode

DataNodes

Users • Access point for clients

• Exposes file system operations

• Organizes block creation / deletion / 

replication of DataNodes

• Can have secondary NameNode to

avoid single point of failure

• Stores blocks of data

• Serves read/write requests

• Perform computations on 

blocks



Example: Write File

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

NameNode

DataNodes

Users
1. Create file

2. Data stream for writing

7. Close and complete

4. Create replica

5. Acknowledge

File

Blocks created

by data stream Replication level 2

→ Each block twice



Computing with Hadoop

• HDFS „only“ distributed block storage

• Each DataNode should also serve as compute node
• Map / Reduce / Shuffle tasks

• Ideally also general compute tasks

• Each resource should only be used by one task
• CPU cores

• Memory

→ No overutilization

• Resources should be used as efficiently as possible
→ No underutilization

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



YARN for Resource Management

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

Users

NodeManager NodeManager

• Resource scheduler

• Manages resources for different 

applications

• Runs on DataNodes

• Gets tasks from Resource Manager

• Executes tasks on local resources



Running Applications with YARN

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

Users

NodeManager NodeManager

Application

1. Submit

2. Launch 

Application

Master

5. Provide

resources

Application

Master

3. Request resources

ApplicationApplication

6. Launch application in container

• Called Container

• Allocated by Resource Manager

• Started by Application Master

4.1. Allocate container 4.2. Allocate container



Resource Requests

• Send from Application Master to Resource Manager
• Name of the resource

• Can be used to select specific hosts or racks

• Priority
• Only within the application

• Allows application to have an internal scheduler

• Resource requirements
• Memory

• CPU cores

• Number of containers

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

4. Provide

Resources

Application

Master

3. Request

resources



Launching Containers

• Executes parts of the application
• For example, map, reduce, or shuffle tasks

• Requires commands to start application

• Environment configuration
• E.g., environment variables of application call

• Can access local resources
• Binaries, HDFS files/blocks

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

NodeManager NodeManager

Application

Master
Application

5. Launch application in container



MapReduce with Hadoop

• Implementation of MapReduce on top of YARN

• Users define applications as sequences of map/reduce tasks

• Hadoop specifies as MRAppMaster YARN container

• MRAppMaster manages execution of tasks

• Two execution modes
• Java applications

• Streaming mode

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Java Applications

• MapReduce applications defined by Jobs programmatically

• Job class used to
• Specify input

• Register mapper

• Register reducer

• Specify output

• Mapper and reducer tasks defined by extending classes

• Compiled Jar is submitted to resource manager for execution

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Example for a Mapper

• Hadoop Mapper for Word Count example

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Type of input key

Type of input value Type of output key

Type of output value



Example for a Reducer

• Hadoop Reducer for the Word Count example

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Type of input key

Type of input value Type of output key

Type of output value



Example for a Job definition

• Hadoop Job for the Word Count example

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Reads file line by line



Execution of Word Count with Hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

DataNode

Users

NodeManager

DataNode

NodeManager

DataNode

WordCount.jar

1. Submit

2. Launch 

Application

Master

MRAppMaster



Execution of Word Count with Hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

DataNode

Users

NodeManager

DataNode

NodeManager

DataNode

5. Provide

resources

MRAppMaster

3. Request resources

for Map tasks

WordCount

Map Task

WordCount

Map Task

6. Launch Map tasks in container

4.1. Allocate container for map 4.2. Allocate container for map

7. Compute intermediary results7. Compute intermediary results



Execution of Word Count with Hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

DataNode

Users

NodeManager

DataNode

NodeManager

DataNode

MRAppMaster

8. Report tasks

as finished

9.1. Free container for map 9.2. Free container for map



Execution of Word Count with Hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

DataNode

Users

NodeManager

DataNode

NodeManager

DataNode

12. Provide

resources

MRAppMaster

10. Request resources

for Reduce tasks

WordCount

Reduce Task

13. Launch Reduce tasks in container

11. Allocate container for reduce

14.2. Shuffle intermediary data

14.1. Shuffle intermediary data

15. Write output

Shuffle is an automated service

running in the NodeManager



Execution of Word Count with Hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

Node Manager

DataNode

Users

Node Manager

DataNode

Node Manager

DataNode

MRAppMaster

16. Report job

as finished



Execution of Word Count with Hadoop

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Resource

Manager

NodeManager

DataNode

Users

NodeManager

DataNode

NodeManager

DataNode

17.1. Free container for reduce

17.1. Free

App.

Master



Streaming Mode of Hadoop

• Provided Java Application that implements Hadoop MapReduce

• Input and output by line-wise file processing
• Same as the handler we showed in the word count example

• Formats can be defined using command line parameters

• Mapper/Reducer can be any executable application

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

Java Application that implements

Hadoop MapReduce

Input and output locations

Executables used as

mapper/reducer

Copies local files to compute

nodes



Word Count with Python

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Additional Important Parts of Hadoop

• Combiner
• Reducer function that runs locally before shuffling the data to another

node

• Often same as reducer, but not always
• Requires functions to be chainable / idempotent

• Can reduce network traffic

• Example:
• Word count reducer can also be used as combiner

• The shuffled pairs would not all have a count of 1 anymore, but the word counts
of the data of that node

• MapReduce Job History Server
• Collects information about the history of MapReduce jobs

• Log files, start/end times, job state

• Can be used by users to see status ob their jobs

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Limitations of Hadoop

• Multiple Map and/or Reduce steps require multiple jobs
• Can still be defined in a single Java file

• Output of one job can be input of another job

• Jobs can have dependencies, e.g., one waiting for the completion of
other jobs

• Dependencies must be modeled by the programmer

• All communication between jobs via the file system
• Bad for multiple computations on the same data, e.g., chained map

functions

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Outline

• Overview

• MapReduce

• Apache Hadoop

• Apache Spark

• Summary

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Apache Spark

• Engine for large-scale data processing

• Designed to resolve limitations of Hadoop for data analysis

• Supports in-memory analysis
• Good support for iterative algorithms

• Supports arbitrary combinations of Map and Reduce tasks
• Users do not need to care about specific jobs and their dependencies

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Spark Stack (I)

• SparkSQL for SQL-like queries and data frame generation

• Spark Streaming for live processing of streaming data

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Spark Stack (II)

• MLlib for machine learning algorithms
• > 20 algorithms for clustering, regression, and classification

• GraphX for graph algorithms

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Data Structures used by Spark

• Not a file system like Hadoop, instead two important in-memory 
data structures

• Resilient Distributed Dataset (RDD)
• Abstraction layer for data operations

• Immutable partitions of elements

• All elements in a RDD can be processed in parallel

• Support map, reduce, filtering, user-defined functions, and persistence

• Data frame
• Higher abstraction built on RDDs

• Similar to R / pandas data frames

• Usually generated using the SparkSQL API

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Infrastructures to Execute Apache Spark

• Spark allows setup of clusters for computing
• Not the standard way to use Spark

• Compatible with many existing infrastructures instead

• Computing
• Hadoop/YARN and Apache Mesos

• Storage
• Hadoop/HDFS, Cassandra, HBase, MongoDB, …

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Programming with Apache Spark

• Natively implemented in Scala
• JVM language with type inference and functional programming

concepts

• Also provides APIs for
• Java

• Python (PySpark)

• R (SparkR)

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Word Count with PySpark

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

flatMap can map input to multiple outputs

Python lambda functions: anonymous

function with parameters a,b that returns

the result of the computation after the

colon, i.e., a+b

reduceByKey reduces the data set by

merging (i.e. reducing) key-value pairs

with the same key



Two major differences to Hadoop

• In-memory
• RDDs and data frames are handled in-memory if possible

• Vast speed-up
• Example: Logistic Regression

• Does not provide own distributed storage back-end

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Spark Ecosystem

• Different execution modes

• Large open source community

• Many technologies on top of Spark
• https://spark-packages.org/

• Still rapidly developing
• Core concepts stable

• 2.4.0 release this fall

• 3.0.0 release planned for next year

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science

https://spark-packages.org/


Outline

• Overview

• MapReduce

• Apache Hadoop

• Apache Spark

• Summary

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science



Summary

• Big data processing requires dedicated infrastructures
• Moving data not feasible

• Move computation to data

• MapReduce as programming model for big data processing

• Apache Hadoop as big data framework
• HDFS distributed and reliable file system

• YARN for resource management

• Provides a MapReduce framework

• Apache Spark for in-memory computations with big data
• Compatible with different infrastructures, including Hadoop

• Provides API for machine learning

Introduction to Data Science 

https://sherbold.github.io/intro-to-data-science


