Chapter 12

Big Data with
Map / Reduce

Dr. Steffen Herbold
herbold@cs.uni-goettingen.de



Outline

» Overview

« MapReduce

» Apache Hadoop
« Apache Spark

* Summary



Repetition: Definition of Big Data

What are the innovative
forms of information

Definition of Big Data :
processing?

« Following Gartner's IT Glossary:
« Big data is high-velume, high-velocity and/or -variety information

assels that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and
process automation.

* The three Vs

* Volume - Some people acualy use 10 Vs 1o defing
. big data!
Velocity - Variabilly
« Variety ¥ * Varacity
“) | = Walidity
3 « Wuinesabiity
T < Volakty
= Vizsuakzaban
£ * Vaka

T R AL S LU R R SITAT
S GOTTINGE




Parallelism Is Mandatory

In pioneer days they used oxen for heavy pulling, and when
one ox couldn't budge a log, they didn't try to grow a larger ox.

We shouldn't be trying for bigger computers, but for more
systems of computers

— Grace Hopper




Parallel Programming Models

* Message Passing
* Independent tasks on local data
» Tasks interact by exchanging messages

« Shared memory
» Tasks share common address space
» Tasks interact by reading/writing in this space

 Data parallelization
» Tasks execute independent operations on partitions of data |
» Well suited for problems that are “embarrassingly parallel”




Traditional Infrastructures

— Database or Storage
Data storage @ Area Network (SAN)

| | |
Compute cluster E E % Compute Nodes
| | |

v !

Result / Insight ‘@’




Message Passing / Shared Memory

Data storage e ’

Each node may load complete
| data!

‘ ‘ ‘ \h - Does not scale

Compute cluster

Result / Insight ‘@'

Introduction to Data Science
https://sherbold.github.io/intro-to-data-science



Data Parallelization

Each node only loads partition

Data storage @
- Scales better

| —> Still requires transfering all

‘ ‘ ‘ D data over the network
Compute cluster E : BN
| |

Result / Insight ‘@'




Data Locality as Solution

If moving data is the problem,
stop moving the datal

q|

* Not supported by traditional clusters / infrastructures

 Clusters for sharing CPUs, not storage
« Storage made for IO, not computations




Core concept of Big Data Technologies

L Parallelization —I— L Data Locality J

¥

LCompute Cluster with Distributed Storage

Our examples:




Outline

» Overview
 MapReduce

» Apache Hadoop
« Apache Spark

* Summary



MapReduce

* Programming model for data parallelization
« Published in 2004 by Google

* map() and reduce() functions for data processing
» Based on transformations of key-value pairs

« shuffle() function for arranging intermediate results

« Distribution via master/worker paradigm
» Supports high availability / recoverability
 Discussed together with hadoop

Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing
on large clusters.”" Communications of the ACM, 51.1 (2008): 107-113.



Overview of MapReduce

map() shuffle() reduce()

L

Initial pairs Intermediate pairs Pairs grouped Results by
<keyl,valuel> <key2,value2> by key2 key2




The map() Function

i

« Concept from functional programming

» Applies a function to every item in the input separately
* map(fun, <keyl,valuel>) - list(<key2, value2>)

* Functions are usually user-defined Data parallelization
trivial

* Input keys and output keys can be different
« Also different types

* Output is a list, i.e., one mapping can have multiple outputs
« All list elements must have same types

In the initial MapReduce implementation, all

- keys and values were strings, users where

) expected to convert the types if required as
I part of the map/reduce functions



The shuffle() Function

« Organize data by key
* shuffle(list(<key2,value2>)) - list(<key2, list(value2)>)

 Often includes sorting by key for efficiency

 Shuffle does not wait for map() to finish
* Once a <key2,value2> is available it can be shuffled
» Reduces waiting times

 Provided by the MapReduce framework
« Can be overridden by users to optimize for use case




=

The reduce() Function =

 Related to fold from functional programming E

« Aggregates <key2,value2> pairs with the same key
 Single value per key

* Results in a list of values, one for each key
 reduce(fun, list(<key2,list(value2)>)) - list(value3)
« Functions are usually user defined



Parallelization with MapReduce

* Input can be read in chunks
 Parallelism for creation of initial key-value pairs

* map() can be computed for each key-value pair independently
 Parallelism potential only limited by amount of data

« shuffle() can start working as soon as first key-value pair is
processed
 Limits waiting times

* reduce() can run in parallel for different keys
* Need not wait for map to complete
« Can already start when all results for a key are available



This is the “Hello
World” for

Word Counts with MapReduce 7y et

What is your name?

* Our Data: The name is Bond, James Bond.

()

* Initial <keyl,valuel> pairs:
» <sentence1, “what is your name”>
» <sentence2, “the name is bond james bond™>

» map() function: emit <word,1> for each word in a sentence
» <sentence1, “what is your name”>
> <“what”,1>, <“is”,1>,<“your”,1>,<“name”,1>
» <sentence2, “the name is bond james bond”>
- <“the”, 1>,<*name”,1>,<"is”,1>,<*bond”,1>,<“james”,1>,<"bond”, 1>
* reduce() function: key concatenated with sum of values
. <*what”, list(1)> > “what: 1”
» <*bond’, list(1,1)> =>"bond: 2”



Outline

» Overview

« MapReduce

« Apache Hadoop
« Apache Spark

* Summary



Overview of Hadoop

* Open-source implementation of MapReduce
» Supported by all major cloud providers
« Used by many large companies, e.g., Twitter, Facebook, Amazon, ...

Hadoop

MapReduce Ol

Data Processing

Cluster resource management YARN

Distributed file system




Hadoop Distributed File System (HDFS)

Hadoop
MapReduce

Others

« Core component of Hadoop

YARN

I |

» Goals of HDFS
 High throughput instead of low latency
» Support for large files and data sets
* Moving computation instead of moving data (= Data locality)
» Resiliency against hardware failures

 Uses a master/slave architecture



Overview of HDFS

Users + Access point for clients
( NameNode |- * Exposes file system operations
~— + Organizes block creation / deletion /
%@\) a replication of DataNodes
« Can have secondary NameNode to

avoid single point of failure

DataNodes e Stores blocks o_f data
~—. » Serves read/write requests

: - ; - * Perform computations on
| | blocks




Example: Write File

Users

. (NameNode

Flle \\ \
\
N
N

. @\\\ \\ O@ /
N %
- @é \\ \\O\’Q
Blocks created = % " RN
N
by data stream l— ® 0

DataNodes

._§f

=

5. Acknowledge

Replication level 2
- Each block twice



Computing with Hadoop

« HDFS ,only” distributed block storage

« Each DataNode should also serve as compute node
« Map / Reduce / Shuffle tasks
* |deally also general compute tasks

« Each resource should only be used by one task
 CPU cores
 Memory
- No overutilization

» Resources should be used as efficiently as possible
- No underutilization

Hadoop

Others

YARN




YARN for Resource Management

Resource scheduler
Manages resources for different

Users applications

(Resource
&%) LManager a

NodeManager % NodeManager % NodeManager Ezt

Runs on DataNodes
Gets tasks from Resource Manager
Executes tasks on local resources




Running Applications with YARN

Users | Aeicaton

_____ 1. Submit (Resource a

LManager

S 2. Launch

L’ Application
4.1. Allocate container - Master
/ 5. Provide

/

it resources

/
‘

N

N

4 N
N

1

1

1 N

1

[}

1

1

1

1

1

4

I
I
|
|
I
I
I
|
|
:
’ |
v

1 3. Request resources
1

9§
N

“~_4.2. Allocate container

N
N
\

6. Launch appllcatlon in container

Introduction to Data Science
https://sherbold.github.io/intro-to-data-science

. Called Container
* Allocated by Resource Manager
» Started by Application Master




Resource Requests

« Send from Application Master to Resource Manager

 Name of the resource
» Can be used to select specific hosts or racks

o Resource
» Only within the application
« Allows application to have an internal scheduler 4.Provide !4 3.Request
Resources vy | resources
* Resource requirements
9 NodeManager ‘Ez
 Memory
. Application
CPU cores A @

« Number of containers



Launching Containers

« Executes parts of the application

* For example, map, reduce, or shuffle tasks
* Requires commands to start application

* Environment configuration
* E.g., environment variables of application call

 Can access local resources
* Binaries, HDFS files/blocks

Application
Master

NodeManager Esi

5. Launch application in container

NodeManager

Application @

€,




MapReduce with Hadoop lMa“frfi‘?ch

YARN

* Implementation of MapReduce on top of YARN

» Users define applications as sequences of map/reduce tasks
« Hadoop specifies as MRAppMaster YARN container

« MRAppMaster manages execution of tasks

* Two execution modes
 Java applications
« Streaming mode



Java Applications

« MapReduce applications defined by Jobs programmatically

« Job class used to
» Specify input
» Register mapper
* Register reducer
» Specify output

« Mapper and reducer tasks defined by extending classes

« Compiled Jar is submitted to resource manager for execution



Example for a Mapper

« Hadoop Mapper for Word Count example

Type of input value Type of output key

Type of inputkey

Type of output value

pukbklic =static clasz TokenizerMapper extends Mapper<Object, Text, Text,
private fimal =static IntWritable one = new IntWritakble(l):
private Text word = new Text () !

pukbklic woid map (Chject key, Text walue, Context context
} throws ICException, InterruptedException {

Sf text into tokens
StringTokenizer itr = nmew StringTokenizer(value.toString()):
while (itr.hasMoreTokens ()} {

Sf add an output pair <word,l> for each token

word.set (itr.nextToken ()}

context.write (word, one);

IntWritable> {




Example for a Reducer

« Hadoop Reducer for the Word Count example

Type of input value Type of output key

Type of inputkey

~ Type of output value

private IntWritable result = new IntWritable():

public wvolid reduce (Text key, Iterable<IntWritable> wvalues, Context context
} throws ICException, InterruptedException {
S calculate sum of word counts
int sum = O;
for (IntWritakble wval : values) {
sum += val.get ()
1
result.set (sum) ;
fSf write result
context.write(key, result);

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {




Example for a Job definition

« Hadoop Job for the Word Count example

public class WordCount {
pukbklic static wold main(String[] args) throws Exception {
S Hadoop configuration
Configuration conf = new Configuration() .’

Sf create a Job with the name "word count™
Job job = Job.getInstance {conf, "word count”
job.setJarByClass (WordCount.class) ;

S Bet mapper, reducer, and output Cypes
job.setMapperClass (TokenizerMapper.class) ;
job.setReducerClass (IntSumReducer.class) ;
job.setOutputKeyClass (Text.class) !

job.setOutputValueClass (IntWritable.class) ! . ) )
Reads file line by line

S specify input and output files
FileInputFormat.addInputPath{jokb, new Path{args[C]})):
FileCutputFormat.setOutputPath({jokb, new Path{args[l]1}):

g

S Tun job and wait for completion
job.waitForCompletion (true) !




Users H

Execution of Word Count with Hadoop

. (Resource
LManager a

2. Launch !
Application !
Master

v

|

NodeManager
DataNode

n)

NodeManager
DataNode

WRApaser

-

NodeManager
DataNode

“




Execution of Word Count with Hadoop

Users

(Resource
LManager
// 5. Provide

,/ resources
4.1. Allocate container for map,-
/7

R et
7

13. Request resources [
1 N

i for Map tasks A

NodeManager NodeManager
DataNode DataNode £ DataNode 1
WordCount < . WordCount
i i . @

7. Compute intermediary results 6. Launch Map tasks in container 7. Compute intermediary results

I
I
|
|
I
I
I
|
|
:
’ |
v

NodeManager




Execution of Word Count with Hadoop

Users
(Resource
LManager

7’
9.1. Free container for map -
/

N
“~_9.2. Free container for map
N
N

R et

18. Report tasks

Vs \\
» . as finished DA

NodeManager NodeManager NodeManager
DataNode E DataNode : DataNode ]
MRAiiMﬁtﬁr
2 2




Execution of Word Count with Hadoop

Shuffle is an automated service
running in the NodeManager

Users -
: N
(Resource 1
LManager .
12. Provide ' * \\\
resources ! | S
I ~.11. Allocate container for reduce
i 110. Request resources |~.
v 1 for Reduce tasks "4 15. Wnte output
NodeManager NodeManager NodeManager
DataNode DataNode £ DataNode -* R

% MRAppMaster | ----------|- WordCount
<---

i 13. Launch Reduce tasks in container A 14.2. Shuffle intermediary data

14.1. Shuffle intermediary data




Execution of Word Count with Hadoop

Users

(Resource
q’)% LManager a

A

116. Report job
as finished

Node Manager Node Manager
g DataNode : DataNode R §

Node Manager
DataNode




Execution of Word Count with Hadoop

Users

(Resource
LManager
17.1. Free !
App. | Ny .
Master ! \\17.1. Free container for reduce
;

NodeManager NodeManager NodeManager
DataNode : DataNode : DataNode R ]




Streaming Mode of Hadoop

* Provided Java Application that implements Hadoop MapReduce

* Input and output by line-wise file processing
« Same as the handler we showed in the word count example
» Formats can be defined using command line parameters

* Mapper/Reducer can be any executable application

Java Application that implements
Hadoop MapReduce

hadoop jar hadoop-streaming-2Z.9.1.jar %
—-input myInputDirs \
—output myCutputDir
-MappeEr mMapper.py

-reducer reducer.py
-file mapper.py \ Executables used as

-file reducer.py mapper/reducer

Input and output locations

Copies local files to compute
nodes



Word Count with Python

#!'/usr/bin/env python

import sys

# read from standard input
for line in sys.stdin:
# split the line into words
words = line.strip() .splitc{)
# increase counters
for word in words:
# print output pairs to standard output
# key and wvalus separated by tabulator
print "%s%t%s' % (word, 1)

#!' fusr/bin/env python

AL v

from operator import itemgetter
import sys

# init current word and counter as not existing
current word = None

current _count = 0

word = None

# read from standard input

for line in sys.stdin:
# read output from mapper.py
word, count = line.strip().splic('“tc', 1)
count = int (count)

# Hadoop shuffle sorts by key
$# -» all values with same key are next to =ach other
if current word = word:
# =zame word -> increase count
current count += count
else:
if current word:
# write result to standard output
print('%s\t3s"' % {(current word, current_count})
# reset counter and update current word
current count = count
current word = word

# output for last word
if current word == word:
print('%s\t3s"' % {current word, current_count})




Additional Important Parts of Hadoop

« Combiner

« Reducer function that runs locally before shuffling the data to another
node

« Often same as reducer, but not always

* Requires functions to be chainable / idempotent
« Can reduce network traffic
« Example:

 Word count reducer can also be used as combiner

» The shuffled pairs would not all have a count of 1 anymore, but the word counts
of the data of that node

« MapReduce Job History Server

 Collects information about the history of MapReduce jobs
 Log files, start/end times, job state

« Can be used by users to see status ob their jobs



Limitations of Hadoop

« Multiple Map and/or Reduce steps require multiple jobs
 Can still be defined in a single Java file
 Output of one job can be input of another job

« Jobs can have dependencies, e.g., one waiting for the completion of
other jobs

» Dependencies must be modeled by the programmer

 All communication between jobs via the file system

« Bad for multiple computations on the same data, e.g., chained map
functions



Outline

» Overview

« MapReduce

» Apache Hadoop
« Apache Spark

* Summary



Apache Spark Sﬁ‘“a f(z

™

* Engine for large-scale data processing
 Designed to resolve limitations of Hadoop for data analysis

e Supports in-memory analysis
» Good support for iterative algorithms

« Supports arbitrary combinations of Map and Reduce tasks
» Users do not need to care about specific jobs and their dependencies



Spark Stack (I)

MLlIib
Streamingll (machine
learning)

Apache Spark

« SparkSQL for SQL-like queries and data frame generation

« Spark Streaming for live processing of streaming data



Spark Stack (lI)

MLlIib
Streamingll (machine
learning)

Apache Spark

« MLIib for machine learning algorithms
« > 20 algorithms for clustering, regression, and classification

» GraphX for graph algorithms




Data Structures used by Spark

* Not a file system like Hadoop, instead two important in-memory
data structures

 Resilient Distributed Dataset (RDD)
» Abstraction layer for data operations
* Immutable partitions of elements
 All elements in a RDD can be processed in parallel
« Support map, reduce, filtering, user-defined functions, and persistence

« Data frame
« Higher abstraction built on RDDs
« Similar to R / pandas data frames
« Usually generated using the SparkSQL API



Infrastructures to Execute Apache Spark

« Spark allows setup of clusters for computing
* Not the standard way to use Spark

« Compatible with many existing infrastructures instead

« Computing
« Hadoop/YARN and Apache Mesos

» Storage
« Hadoop/HDFS, Cassandra, HBase, MongoDB, ...



Programming with Apache Spark

» Natively implemented in Scala

« JVM language with type inference and functional programming
concepts

* Also provides APIs for
» Java
* Python (PySpark)
* R (SparkR)



Word Count with PySpark

flatMap can map input to multiple outputs

text file = sc.textFile("hdfs=s:/

fdata.txE™)

map (lambda word:

counts. savehAsTextFile("odfs: /

counts = text file.flatMap(lambda line:

(word, 1)y} %\

JreduceByEey(lambda a, kb: a + k)
fWSLERE™)

line.split(™ ")} \

reduceByKey reduces the data set by
merging (i.e. reducing) key-value pairs
with the same key

—  Python lambda functions: anonymous
function with parameters a,b that returns
the result of the computation after the
colon, i.e., atb



Two major differences to Hadoop

* In-memory
 RDDs and data frames are handled in-memory if possible
 Vast speed-up

« Example: Logistic Regression 120 110

w
(=]

¥ Hadoop

¥ Spark
30
0.9
0

« Does not provide own distributed storage back-end

Running time (s)
(2]
=



Spark Ecosystem

* Different execution modes
 Large open source community

« Many technologies on top of Spark
* hitps://spark-packages.org/

« Still rapidly developing
« Core concepts stable
» 2.4.0 release this fall
» 3.0.0 release planned for next year


https://spark-packages.org/

Outline

» Overview

« MapReduce

» Apache Hadoop
« Apache Spark

e Summary



Summary

 Big data processing requires dedicated infrastructures
* Moving data not feasible
« Move computation to data

 MapReduce as programming model for big data processing

« Apache Hadoop as big data framework
« HDFS distributed and reliable file system
* YARN for resource management
* Provides a MapReduce framework

« Apache Spark for in-memory computations with big data
« Compatible with different infrastructures, including Hadoop
» Provides API for machine learning



